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This is a short introduction of the exterior form formalism focus on its ap-
plications in physics and then mostly aimed to physics students. As a rule of a
game played here we never use a coordinate frame neither in the definitions nor
in the proofs but only at the end in order to recover the classical physics equa-
tions. This approach is unusual but we think is helpful for the understanding
and very valuable to grab the physical meanings of the mathematical object.

A large part of these notes are just “notations rewriting” of well known
physical objects but this should not be underestimate as it gives short and
elegant expressions that are useful both for insights and computations. Appart
from the game explained above most the material presented here is very well
known [Fra11, Fla63, BBB85] with exeption maybe of Corollary 11 for which we
have surprisingly not found its statement in the litterature and the discussion
around Corollaries 7, 8 which we believe deserves more publicity.

1 Exterior forms

1.1 Integration on a submanifold
Usually, introduction about exterior form start at the coordinate level giving
the formal definition of an exterior algebra [Pau07, God70, LCC+09]. However,
it is not so obvious at first sight why such an object is usefull and interesting in
physics. So we would instead propose the following definition to go immediatly
to the main point [Fla63].

Definition 1. A k−form is what to be integrated on a k−dimension submani-
fold.

This definition is made vague and unformal on purpose. Because it much
closer of what any physics would want as a mathematical object. That is to
choose an submanifold1 : a path, a surface, a volume or a time interval × a
volume and have physical quantity to integrate on it. From the lowest mathe-
matical level this is just an application α that for any k−dimension submanifold

1More precisely an “oriented submanifold” as the integration on path from a to b or from
b to a will have a different sign
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V associate a real number α(V) ∈ R. This should really be though as the “mean-
ingful physical quantity”, as it doesn’t depend on the choice of coordinate, not
even the space-time metric g. If one think of a glass of water the quantity of
water in the volume defined by the glass (an 3 dimension submanifold) should
exist and be independant on the methods we measure space or time. One would
denote

α(V) =

∫
V
α.

Here are some examples.

quantity dimension basis unit
temperature gradient 1-form dx, dy, dz K.m−1

radiation 2-form dx ∧ dy, dx ∧ dz, dy ∧ dz W.m−2

density of mass 3-form dx ∧ dy ∧ dz kg.m−3

flow 3-form dx ∧ dy ∧ dt, ... kg.m−2s−1

Field Lagrangian 4-form dx ∧ dy ∧ dz ∧ dt J.m−3s−1

Notice that in R3 the dimension of the k−form Λk(R3) are respectively 1, 3, 3
et 1. The 0-form and 3-form are usually seen as “scalar” whereas 1-form and
2-form are usually seen as “vector field”. In R4 (or higher dimension) there is
no such equivalence for the 2-form. But even in R3 it is still interesting to
distinguish them at the mathematical level since they would not behave the
same way with a change of coordinate. A fact that stills appears in the system
of units.

1.2 Tangent vector fields
“Vector field” is also usually used to design another mathematical object that
to avoid ambiguity we will call here tangent vector fields. If exterior forms are
associated with integration, one intead should think of tangent vector fields
[LCC+09] informally as follow.

Definition 2. A tangent vector field is what describes a flow, ie a transport.

More precisely for X a vector field and a point x0 we have a natural associ-
ated flow x(t) solution of the equation

∂tx(t) = X(x(t)) x(0) = x0. (1)

For example

quantity object basis unit
velocity of a fluid tangent vector ∂x, ∂y, ∂z m.s−1

One can use tangent vector fields to define different operations on exterior
forms. But because this is not completly obvious we first define a few opérations
on a submanifold V :
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Figure 1: Here X is the vertical vector field, V is the disk bellow, ∂V is the
circle bellow, V(t) is disk above, ∂V(t) is the circle above, It(V) is the cylinder
(volume) and It(∂V) is the ring around the cylinder.

• The transport of the submanifold V(t) = {x(t), x0 ∈ V}. One can think
for example as a blade of grass or a leave transported in the flow of water.

• An enlarged submanifold It(V) that is a submanifold which is one dimen-
sional larger than V defined as the union of the V(s) for s ∈ [0, t]. We can
see it as keeping track of the successive positions of transported manifold
along the flow as in an numerical simulation. For example in the case of a
point V = {x0}, this is just the line traced by the trajectory x(t). In the
case of the leave it is the volume in the water that has been covered by
the leave on its way.

Both V(t) and It(V) are natural objects on which integrate an exterior form.

1.3 A few elementary operations on exterior forms
We now present some basic operations to manipulate exterior form as appears
in math textbooks [JJ08, LCC+09, Fra11]. Maybe this section is more aimed to
students in mathematics but it fit in the “no coordinate approach” for definitions
and proofs of this introduction. Also the operations presented here have some
physical meaning that we would like to stress. The philosophy here is the
operations on submanifold can be translated into an operation on form. More
precisely consider an application that from a k submanifold V gives another
submanifold V → Ṽ. As a fondamental rule, we will ask that the “physical
quantity” does not change. This defines either an application that from a k
form α gives another form α→ α̃ such that

α̃(Ṽ) = α(V) (2)
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or a dual application that define α from α̃ : α̃→ α also with (2). Here are some
examples with an tangent vector field X.

• Change of coordinate : we can describe the submanifold as V in a coor-
dinate frame or as Ṽ in another coordinate frame. The transformation
α → α̃ given Equation (2) means that α is a “k dimensional covariant
tensor”. (On the other hand the tangent vector field X is a contravariant
tensor).

• The pullback transport : Here we use another notation for the flow φt(x(0)) =
x(t) as in (1) and define φ∗t (α) as a k form such that for any k dimensional
submanifold V

[φ∗t (α)](V) = α(V(t)).

• For α a k form, we can then introduce a k− 1 form Itα defined such that
for any k − 1 dimensional submanifold V

[Itα](V) = α(It(V)).

At first order when t→ 0 we have the following “derivative” operations.

• The Lie derivative

LXα =
d

dt
|t=0φ

∗
t (α) = lim

t→0

φ∗t (α)− α
t

.

• The interior product

iXα =
d

dt
|t=0Itα = lim

t→0

Itα− α
t

.

This has a natural physical meaning : for example with ρ a density of
matter (a 3-form) and X a velocity field, iXρ (a 2-form) describes the
density flow (For any surface S, iXρ(S) is the flow of matter that is going
through S).

All these operations also have a simple definition in a coordinate system. How-
ever in my opinion it is still important to start from a geometric point of view
since it gives an motivation to introduce these objects and also it makes it clear
that they are independent of the choice of the coordinate and therefore should
have some physical meaning.

2 Exterior Derivative

2.1 Integration on the boundary
The usual formal definition of the exterior derivative use the derivation at the
coordinate level [JJ08, LCC+09, Fra11] but as before it is not very clear at
first sight why such an objet would be interesting in physics. So here again is
another definition that is informal but that looks very natural and capture the
main interest of the object.
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Definition 3. For a k−form α, the exterior derivative dα is the (k + 1)−form
such that dα(V) = α(∂V) for any (k + 1) dimensional submanifold V.

This is of course the very famous Stokes Theorem.∫
V
dα =

∫
∂V
α

but as in Definition 1 such an equation could also be seen as a definition of an
application on the (k + 1)−submanifolds, that is a (k + 1)−form and such a
definition does not depend on a choice coordinate.

Also boundaries of submanifold are very commun objects : the extremal
points of a path, the circle surounding a disc, the surface around a volume.
One can also think of the initial and final configurations of a system as the
3 dimension boundaries of the evolving system in time and space seen as a 4
dimension submanifold.

In a 3 dimension space whether the form α is a 0, 1 or 2-form, the exterior
derivative dα is called gradient, curl and divergence2.

Λ0(R3)
grad−−−→ Λ1(R3)

curl−−→ Λ2(R3)
div−−→ Λ3(R3).

where Λk(R3) denote the space of k−form.
We also state the following important observation : «the boundary of a

manifold has no boundary» ∂(∂V) = ∅. Therefore for any form α, we have
(d ◦ dα)(V) = α(∂(∂V)) = 0 and we write the following proposition.

Proposition 4. d ◦ d = 0

For example in R3 this is the well known curl ◦ grad = 0 and div ◦ curl = 0.

2.2 Conserved quantity
With the previous section in R3 a divergence-free vector field is then a 2-form
α such that dα = 0. In R4. we can propose a similar definition of a conserved
quantity. If we go back to our example of evolving system in time and space. For
conservation we ask that the integration on the initial and final configurations
gives the same result. This is guaranty if dα = 0 so we can propose the following
definition.

Definition 5. A conserved quantity is a 3−form3 J such that dJ = 0.

Writting the 3-form in a coordinate frame J = (ρ, jx, jy, jz), the condition
dJ = 0 is just the Continuous Equation [Fla63]

∂tρ+ div(j) = 0.

2The most commun convention use the metric tensor to transform these forms into vector
field.

3Or (n− 1)−form if the system is n dimensional
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An advantage of the above formulation is that it does not depends on the coor-
dinate frame or the metric. Equivalently for any V we have J(∂V) = 0. In word
: “What is going into V is the same as what is going out of V” which is also a
very natural non mathematical definition of what a conserved quantity is.

2.3 A few mathematical relations
We go back to the math textbooks [JJ08, LCC+09, Fra11]. Here are some
remarks related to the boundaries (see for example Figure 1) :

1. The boundary of the transported submanifold is just the transport of the
boundary of the inital submanifold: ∂[V(t)] = [∂V](t). As a consequence
for α = dβ we have

φ∗t (dβ) = dφ∗t (β) and dLXβ = LX(dβ).

2. The boundary of It(V) has three terms : V, V(t) and the union of ∂V(s)
for s ∈ [0, t]. The latter also corresponds to It(∂V). Therefore we have4

[Itdβ](V) = dβ(It(V)) = β(V(t))− β(V(0))− β(It(∂V))

and then

Itdβ = φ∗t (β)− β − dItβ and LX = d ◦ iX + iX ◦ d.

This last relation is known as Cartan’s magic formula.

3 Maxwell equations
One of the most beautiful application of the exterior form formalism is that
it gives a clean and unified picture of the classical theory of electromagnetism
[Fla63, Fra11].

3.1 The metric and the ? operator
From a purely mathematical point of view of the exterior forms the metric
appears in a quite indirect way through the so called Hodge ? operator. To give
a very simplified definition for a metric g we locally have an orthogonal basis.
The ?-operator associate a k−form to a (n− k)-form that is the “complement”
in the basis. For example : dx→ dy ∧ dz ∧ dt and dx ∧ dt→ dy ∧ dz5.

Combined with the exterior derivative it give an operator ∂ = ? ◦ d ◦ ? that
from a k-form gives an (k − 1)-form.

4The orientation of the boundary parts is a bit tricky.
5With an appropriate sign depending on the signature of g.
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3.2 Maxwell equations
Here are the Maxwell equations written with differential forms (we drop the
constant ε0, µ0, c). Maxwell Theory is given by the wonderful table

Λ0(R4)
d−⇀↽−
∂

Λ1(R4)
d−⇀↽−
∂

Λ2(R4)
d−⇀↽−
∂

Λ3(R4)
d−⇀↽−
∂

Λ4(R4)

f
(1)−−⇀↽−−
(2)

(V,A)
(3)−−→ (E,B)

(4)−−→ 0

?(E,B) −−→
(5)

(ρ, j) −−→
(6)

0

Notice that the dimension of Λ1(R4), Λ2(R4) and Λ3(R4) are 4, 6 and 4. We
denote here

• Aµ = (V,A) : the potential and potential vector (usually a 4−vector).
This is a 1−form as it is linked to the phase of the wave function of the
electron (as for example in the Aharonov Bohm effect).

• F = (E,B) : the electromagnetic field (usually already a antisymmetric
2−tensor). This is a 2−form, one would want to integrate the magnetic
field on a surface for example.

• Jµ = (ρ, j) : charge density and current (usually a 4-vector). This is a
3−form, the density is integrate on a volume and the current on a surface
times a time intervale.

A great advantage here that everything is at the “geometric” level. There is no
choice of parametrisation of the space. No worry about the change of referencial.

Here every arrow of the diagramm is just the exterior derivative. Bellow are
their usual meaning:

(1) This is a Gauge invariance, one can change

V → V − ∂f

∂t
et A→ A+ grad(f)

without modifying electromagnetic field, indeed (3) ◦ (1) = 0.

(2) A particular choice of Gauge called Lorentz’s Gauge (2) = 0 that is

∂V

∂t
+ div(A) = 0.

(3) Electromagnetic fields are expressed with the potential and potential vec-
tor:

E = −∂A
∂t
− grad(V ) et B = curl(A).
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(4) Here are the Maxwell-Faraday et Maxwell-Thomson equation

∂B

∂t
+ curl(E) = 0 et div(B) = 0

This follows of course from (4) ◦ (3) = 0.

(5) Here are now Maxwell-Gauss and Maxwell-Ampere equations

div(E) = ρ et − ∂E

∂t
+ curl(B) = j

(6) This is the conservation law of the charge

∂ρ

∂t
+ div(j) = 0

Again that is (6) ◦ (5) = 0.

We can finish by a small historical remark, in 1865 the fantastic idea of Maxwell
were to notice that (6)◦(5) 6= 0 with Ampere equation as stated at that time. He
modified the equation adding the term ∂E

∂t to obtain a coherent theory. There-
fore it is indeed a differential geometry approach that gave nowday’s classical
electromagnetic theory.

4 De Rham (Trivial) Cohomologie
We have seen in Section 2 that if a form α can be written as α = dβ it satisfies
dα = 0. A natural question would be to asked whether the converse is always
true. The problem gives rize to a whole domain of study called De Rham
Cohomology which happens to be one of the most powerful tools to study and
charaterize topological object in differential geometry and algebraic topology.
Here we do not go deep into it but just mention one of its simplest result [God70].

Proposition 6. (De Rham (trivial) Cohomology) In Rn, for any form α that
is not a constant 0−form

dα = 0 ⇔ there exists β such that α = dβ.

This proposition is not true for more complicated topological space and
appends to be a very interesting mathematical question. But in R3 all this is
very well known by any undergrad student :

• α is a 0-form : grad(α) = 0 iff there exists c ∈ R constant such that α = c,

• α is a 1-form : curl(α) = 0 iff there exists a 0−form β such that α =
grad(β),

• α is a 2-form : div(α) = 0 iff there exists a 1−form β such that α = curl(β),
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• α is a 3-form : The equation div(β) = α always has a solution.

In higher dimension, this also implies important properties.

Corollary 7. If J is a conserved quantity, then there exists β such that dβ = J .

In particular in R × R3 for any (ρ, j) that satisfies the continuous equation
there exists a field β = (E ,B) for which Maxwell-Gauss and Maxwell-Ampere
equations are valid

div(E) = ρ and − ∂E
∂t

+ curl(B) = j.

This is a purely mathematical construction. This field should be seen as an
equivalent to the potential flow that describes an irrotational velocity field as a
gradien in hydrodynamics.

Also such a β is not unique and one can made a choice of Gauge. In the
case d(?β) = 0 we have the following

Corollary 8. If J is a conserved quantity, then there exists α such that d?dα =
J .

In a coordinate system it is the usual propagation equation with a source

�α = J (3)

We should stress that this is true for any conserved quantity with no more infor-
mation about the physics of the system. However there are important examples
where α appears in theorical model or is indeed a real physical quantity. For
example :

• The electric charge is conserved. We have the electromagnetic field : (3)
with J = (ρ, j) the charge density and current and α = (V,A) potential
and vector potential.

So we can ask the following.

Question 9. What is the associated α for the conservation of energy, momen-
tum, moment of inertia, weak charge,... ?

5 Euler Lagrange Equations
Here we write the Lagrangian approach for a classical field theory on Rn using
exterior forms.

5.1 Euler Lagrange Equations
As a most simple model we assume that the Lagrangian L(α, dα) is a n-form6

that depends only on a k−form α and its exterior derivative dα. The last
6Most commun conventions call the Lagrangian ?L which is then a 0-form (a scalar).
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hypothesis is more restrictive than considering all the derivatives ( ∂α∂xi
) but is

also reasonable if we believe that dα has more geometric or physical meaning.
We consider a small perturbation δα and write L1 := ∂1L(α, dα) that is an

(n− k)-form and L2 := ∂2L(α, dα) that is a (n− k − 1)-form such that at first
order we have

L(α+ δα, dα+ dδα) ≈ L(α, dα) + δα ∧ L1 + (dδα) ∧ L2

= L(α, dα) + δα ∧ (L1 − (−1)kdL2) + d(δα ∧ L2)

Maximising
∫
V L with fixed boundary conditions on ∂V gives the Euler-Lagrange

Equation.

Definition 10. (Euler Lagrange Equation)

L1 − (−1)kdL2 = 0

Remark that it directly implies that dL1 = 0. So in particular we have the
following.

Corollary 11. If α is a 1-form then L1 is a conserved quantity and L2 is an
associated field7.

A first nice example is of course the electromagnetic field with α = (V,A)
and J = (ρ, j) we have

L = α ∧ J − 1

2
(dα ∧ ?dα), L1 = J and L2 = ?dα

5.2 Noether Theorem
We now mention the famous Noether Theorem. Remark that Euler Lagrange
equation implies that

L(α+ δα, dα+ dδα)− L(α, dα) ≈ d(δα ∧ L2)

We denote ξ an infinitesimal transformation α→ α+ δαξ and L → L+ δLξ. If
the system is invariant by this transformation δLξ = 0 then d(δαξ ∧ L2) = 0 so
δαξ ∧L2 is a conserved quantity. We can state a more general theorem [Olv93].

Theorem 12. (Noether Theorem) If δLξ = d(δΛξ) then δαξ ∧ L2 − δΛξ is a
conserved quantity.

A very nice application of Noether Theorem is of course the conservation of
energy and momentum.

7As in Corollary 7
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5.3 The stress-energy tensor
We consider translations of the system and more generaly the transport along
a flow given by vector field X. Notice that we have LXL = d(iXL) (Cartan’s
magic formula) so we can apply Noether Theorem. We compute

LXL = L+ LXα ∧ L1 + (dLXα) ∧ L2 + LXL|α,dα

and then obtain

d(LXα ∧ L2 − iXL) = −LXL|α,dα.

For example in the case of the electromagnetism Lagrangian and X = ∂t for
translation in time we obtain Poynting’s theorem

∂t(
1

2
(|E|2 + |B|2) + ~A.~j) + div(E ×B) = ~A.∂t~j.

For more general Lagrangian L we can define the following.

Definition 13. We call LXα ∧ L2 − iXL the stress-energy tensor if X is a
translation.

In a coordinate system and with the translations X = ∂ν , this is the usual
formula for the stress-energy tensor defined from a Lagrangian

Tµν = ∂να
η(L2)µη − ηµνL.

And we also state the conservation of energy and momentum in a general setting.

Corollary 14. If LXL|α,dα = 0, ie. the Lagrangian is invariant by the trans-
formation induced by the vector field X, then (LXα) ∧L2 − iXL is a conserved
quantity.

5.4 gravitational waves ?
We finish by giving a partial answer for Question 9. One can find in a book on
General Relativity this equation used to describe gravitational waves

�h̃ = T

where h̃ is constructed with the perturbation of the metric g around the flat
Minkowski metric and T is the 4× 4 Stress-Energy tensor. Here one can think
of each line of T as a 3-form which corresponds to the conservation of energy
(first line) and the conservation of momentum (the three others lines) and then
the line of h̃ play the role of the associated α in Corollary 8 and the associated
β in Corollary 7 can be interpreted as the classical gravitational field.

Unfortunatly general relativity is much more complicated and the Conser-
vation of energy/momentum is true only at first order when gravity is not too
strong.
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6 Summary table

m−2s−1 dx ∧ dy ∧ dt
gradient, curl, divergence d

irrotational, divengence free, conserved quantity dα = 0
De Rham cohomology dα = 0⇒ α = dβ ?
Maxwell equations dF = 0, d ? F = 0

Propagation wave with source d ? dα = J
Gauge invariance d(α+ dβ) = dα

Euler Lagrange equation L1 − (−1)kdL2 = 0
Stress-energy tensor LXα ∧ L2 − iXL
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