Feuille d'exercice 3: Martingales discrètes et temps d'arret

April 5, 2021

Pour chacun des exercices dites si les affirmations sont correctes ou non et justifier.

Exercise 1. Soit X_n des variables iid telles que $\mathbb{E}(X_1) = 0$, et on pose $\mathcal{F}_n = \sigma((X_k)_{k \leq n})$ la filtration canonique associé à X_n . Dans ce qui suit martingales, surmartingales ou sousmartingales sont sous entendus pour la filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$.

- $\Box A_n = \sum_{k=1}^n 3X_k$ est une martingale. Correct
- $\Box \ B_n = \sum_{k=2}^{n+1} k X_k$ est une martingale. Faux
- \Box $C_n = \sum_{k=1}^n k^2 X_k 3n$ est une sousmartingale. Faux
- \square $D_n = (A_n)^4$ est une sousmartingale. Correct

Solution 1. En effet

- 1. Oui, $(3X_n)_{n\in\mathbb{N}}$ sont des variables indépendentes de moyenne nulle.
- 2. Non B_n n'est pas \mathcal{F}_n mesurable
- 3. Non, $\mathbb{E}(C_{n+1}|\mathcal{F}_n) = C_n 3 < C_n$ est une surmartingale et non une sousmartingale
- 4. Oui, puisque A_n est une martingale et $x \to x^4$ est une fonction convexe (Jensen).

Exercise 2. Soit \mathcal{F}_n une filtration et G_n un processus adapté.

- $\Box T_1 = \min(k \in \mathbb{N} | G_k > 1)$ est un temps d'arret. Correct
- $\Box T_2 = \min(k > T_1 | G_k < 0)$ est un temps d'arret. Correct
- $\Box T_3 = \max(k \in \mathbb{N} | G_k = 0)$ est un temps d'arret. Faux
- $\Box T_4 = \begin{cases} 0 & \text{si } G_0 \le 0 \\ 4 & \text{sinon} \end{cases} \text{ est un temps d'arret. Correct}$

(temps d'arret évidement sous entendu pour \mathcal{F}_n .)

Solution 2. En effet

- 1. Oui, comme dans le cours $\{T_1 = n\} = \bigcap_{k < n} \{G_k \le 1\} \cap \{G_n > 1\}$ est bien \mathcal{F}_n mesurable.
- 2. Oui, $\{T_2 = n\} = \bigcup_{l < n} [\{T_1 = l\} \cap_{l < k < n} \{G_k \ge 0\} \cap \{G_n < 0\}]$ est bien \mathcal{F}_n mesurable. En règle général, le temps de la k-ième visite d'un processus adapté est également un temps d'arret.
- 3. Non, voir cours.
- 4. Oui, T_4 est \mathcal{F}_0 mesurable. Donc en particulier pour tout k, $\{T_4 = k\} \in \mathcal{F}_0 \subset \mathcal{F}_k$.

Exercise 3. Soit \mathcal{F}_n une filtration et $(M_n)_{n\in\mathbb{N}}$ une martingale et $(N_n)_{n\in\mathbb{N}}$ une sousmartingale, soit R_n et P_n des processus predictibles positifs.

- $\Box A_n = \sum_{k=1}^n (M_k M_{k-1}) M_k$ est une martingale. Faux
- \square $B_n = \sum_{k=1}^n (M_k M_{k-1}) M_{k-1}$ est une martingale. Correct
- $\Box C_n = -\sum_{k=1}^n (N_k N_{k-1}) 2R_k$ est une sousmartingale. Faux
- \square $D_n = \sum_{k=1}^n (N_k N_{k-1})(\sum_{i=1}^k P_i)$ est une sousmartingale. Correct

Solution 3. En effet

- 1. Non, M_k n'est pas prévisible.
- 2. Oui M_{k-1} est prévisible.
- 3. Non, puisque $-2R_k \leq 0$ finalement C_n est une surmartingale et non une sousmartingale.
- 4. Oui, $(\sum_{i=1}^k P_i)$ est prévisible positif.

Exercise 4. Soit \mathcal{F}_n une filtration, $(M_n)_{n\in\mathbb{N}}$ une martingale avec $M_0=2$ p.s. et T un temps d'arret fini p.s.

- $\square \mathbb{E}(M_{n \wedge T}) = 2 \text{ Correct}$
- \square $\mathbb{E}(M_T) = 2$ Faux
- \square Si $\exists C > 0, \forall n \in \mathbb{N}, |M_n| < C$ p.s, alors $\mathbb{E}(M_T) = 2$ Correct
- \square Si $\exists C > 0, \forall n \in \mathbb{N}, \mathbb{E}(|M_n|) < C$ alors $\mathbb{E}(M_T) = 2$ Faux

Solution 4. En effet

1. Oui, puisque $M_{n \wedge T}$ est une martingale, on a toujours $\mathbb{E}(M_{n \wedge T}) = \mathbb{E}(M_{0 \wedge T}) = \mathbb{E}(M_{0}) = 2$

- 2. Non, les hypothèses sont ici insuffisantes. Contre exemple : la marche aléatoire sur \mathbb{N} , $M_0=2$ avec le temps d'arret $\min(k:M_k=0)$. Alors $\mathbb{E}(M_T)=0$.
- 3. Oui, on a $M_{n \wedge T} \to M_T$ car T est fini p.s. Donc par théorème de convergence dominé : $2 = \mathbb{E}(M_{n \wedge T}) \to \mathbb{E}(M_T)$ et donc $\mathbb{E}(M_T) = 2$.
- 4. Non, même exemple qu'au dessus: $\mathbb{E}(|M_{n \wedge T}|) = 2$ mais $\mathbb{E}(M_T) = 0$.

Exercise 5. Soit X_n une suite de variables aléatoires iid tel que $\mathbb{P}(X_1 = -1) = p$ et $\mathbb{P}(X_1 = 1) = 1 - p$ avec p > 1/2 et \mathcal{F}_n la filtration canonique pour $(X_n)_{n \in \mathbb{N}}$:

- $\Box A_n = \sum_{k=1}^n X_k$ est une martingale Faux
- $\Box \ B_n = 10 + \sum_{k=1}^n X_k + (2p-1)n$ est une martingale Correct
- \square Soit $T = \inf[k \in \mathbb{N}, A_k + 10 = 0]$. Alors $T < \infty$ p.s. Correct
- \square $\mathbb{E}(T) = \frac{10}{2p-1}$ Correct

Solution 5. En effet

- 1. Non, $\mathbb{E}(A_{n+1}|\mathcal{F}_n) = \sum_{k=1}^n X_k + \mathbb{E}(X_{n+1}) = A_n (2p-1) < A_n$.
- 2. Oui, $\mathbb{E}(B_{n+1}|\mathcal{F}_n) = 10 + \sum_{k=1}^n X_k + (2p-1)n + \mathbb{E}(X_{n+1}) + (2p-1) = B_n$
- 3. Oui, Pour T, on peut remarquer que $0 \leq \mathbb{E}((10+A)_{(n+1)\wedge T}) \leq \mathbb{E}((10+A)_{n\wedge T}) \mathbb{P}(T>n)(2p-1)$ et donc $\sum_{n\in\mathbb{N}} \mathbb{P}(T>n) < \infty$.
- 4. De mème on a en fait $\mathbb{E}((2p+1)(n\wedge T)) \mathbb{E}((10+A)_{n\wedge T}) = 10$ car B est une martingale. De plus

$$\mathbb{E}((2p+1)(n \wedge T)) \to (2p+1)\mathbb{E}(T)$$

par croissance monotone et $\mathbb{E}((10+A)_{n\wedge T})\to 0$.